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ABSTRACT 

     The computer science approaches to the classification of 

painting concentrate primarily on painter identification.  While 

this goal is certainly worthy of pursuit, there are other valid tasks 

related to the classification of painting including the description 

and analysis of the relationships between different painting styles.  

This paper proposes a general approach to the classification of 

style that supports the following tasks: recognize painting styles, 

identify key relationships between styles, outline a basis for 

determining style proximity, and evaluate and visualize 

classification results. 

     The study reports the results of a review of features currently 

applied to this domain and supplements the review with 

commonly used features in image retrieval.  In particular, the 

study considers several color features not applied to painting 

classification such as color autocorrelograms and dynamic spatial 

chromatic histograms.  The survey of color features revealed that 

preserving frequency and spatial information of the color content 

of a painting did not improve classification accuracy.  A palette 

description algorithm is proposed for describing the color content 

of paintings from an image’s color map.  The palette description 

algorithm performed well when compared to similar color 

features. 

     The features with the best performance were tested against a 

standard test database composed of images from the Web 

Museum[16].  Several supervised and unsupervised techniques 

were used for classification, visualization, and evaluation 

including k-Nearest Neighbor, Hierarchical Clustering, Self-

Organizing Maps, and Multidimensional Scaling.  Style 

description metrics are proposed as an evaluation technique for 

classification results.  These metrics proved to be as reliable a 

basis for the evaluation of test results as comparable data quality 

measures. 

1. INTRODUCTION 
     Researchers are marshalling advances in digital image 

processing, machine learning, and computer vision to solve 

problems of the attribution and interpretation of fine-art 

paintings[5,7,8,9,10,12,14,15,17,18,21,22].  The research to date 

focuses on painter identification (attribution) and authentication 

and therefore stresses high degrees of accuracy on small target 

datasets.  As a result of this focus, the problem of the broad 

classification of style in painting receives relatively little 

attention[5].  In particular, the following questions of style 

classification in painting are as yet only partially addressed: Is it 

possible to classify paintings in general way? What features are 

most useful for painting classification? How are these features 

different from those used in image retrieval if at all?  How are 

style classifications best visualized and evaluated?  In answering 

these questions, this work endeavors to show that the style of fine-

art paintings is generally classifiable with semantically-relevant 

features. 

     Previous approaches to style classification reveal five trends in 

the literature.  First, the solutions proposed are often style-specific 

addressing only particular kinds of art or even the work of 

particular painters[7,10,12,15,18,21].  Second, the literature 

emphasizes texture features while minimizing the potential role of 

color features[5,14].  Third, the studies to date do not examine 

techniques for evaluating classification accuracy.  Fourth, current 

research disregards the semantic relevance of the features 

studied[9].  Fifth, the projects currently undertaken forego a broad 

approach to style preferring small focused studies of particular 

painters or movements[18,21,22].   

     In contrast to previous approaches, this paper considers the 

components necessary to classify style in a general way with 

techniques that apply to a broad range of painting styles.  Section 

2 outlines the basis of formal approaches to painting style and 

discusses the formal elements considered in this paper: light, line, 

texture, and color.  In Section 3, the feature survey addresses 

feature extraction, normalization, and comparison.  A palette 

description algorithm is defined with some additional discussion 

of color features..  Section 4 reviews the classification methods 

for several supervised and unsupervised techniques including k-

Nearest Neighbor (kNN), Hierarchical Clustering, Self-

Organizing Maps (SOM), and Multidimensional Scaling (MDS).  

Section 5 organizes and summarizes the results of this paper and 

presents two approaches to the evaluation of classification results.  

Section 6 reiterates the conclusions of the study. 

2. FORMAL APPROACHES TO STYLE 
     The formal approach to style presupposes that art is best 

understood in formal terms like line, color, and shape rather than 

content or iconography.  For two reasons, the formal approach to 

style offers the best starting point for the computational 

classification of style in painting.  First, the formal elements of a 

painting like line and color are precisely the qualities of images 

that computers can measure.  Computer approaches based on 

iconography cannot be undertaken until computer techniques exist 

to recognize objects of interest in the art domain.  That is to say, 

until object recognition algorithms can identify a woman holding 

a plate adorned with two eyes, a common iconographic 

representation of Saint Lucy, computer approaches to style based 

on content are not feasible.  Second, many styles of painting, such 

as abstract expressionism, do not contain explicit identifiable 

content.  Therefore, approaches to style based on content cannot 

address works of art whose content is largely and explicitly 

formal.   

     Art historians and critics use a nuanced vocabulary to discuss 

the formal characteristics of paintings[1,20].  The formal terms for 

describing a painting focus on how an artist painted the given 

subject in a particular context.  Color, line, light, space, 



composition, depth, shape, and size are all examples of formal 

characteristics of a painting.  The research presented in this paper 

aims to define the formal characteristics of a painting 

quantitatively in order to identify, classify, and analyze the formal 

elements inherent in a style.  In particular, four formal elements 

are considered: light, line, texture, and color.  The classification of 

style in painting therefore requires that features modeling these 

formal elements be extracted and analyzed to better understand 

particular artists and movements. 

3. FEATURE SURVEY 

3.1 Database 
     The feature survey was conducted using the database described 

by Herik and Postma[5] comprising ten paintings each from the 

work of Cezanne, Monet, Pissarro, Seurat, Sisley, and Van Gogh.  

Table 1 describes the characteristics of this database.  For each 

artist, the mean vertical resolution (pixels), mean horizontal 

resolution (pixels) and mean file size (bytes) are reported. 

Table 1: Database Description 

Artist Vertical Res. Horizontal Res. Size 

Cezanne 889 1031 156399 

Monet 832 877 179350 

Pissarro 699 845 157190 

Seurat 810 946 241553 

Sisley 870 977 199670 

Van Gogh 810 958 201501 

Overall 818 939 189277 

 

3.2 Extraction 
     The feature survey conducted for this study included 11 

features modeling light, 14 describing properties of line, 17 

summarizing texture, and 15 color features.  The features were 

extracted from each image in the database described above.  The 

feature extraction process did not include any image 

preprocessing beyond that required for the feature.  The images 

were not filtered, corrected for size, or corrected for orientation.  

The feature extraction process consisted solely of summarizing the 

relevant image content.   

     Figure 1 demonstrates the visualization for a spatial chromatic 

histogram (SCH), a color feature designed to capture the spatial 

arrangement of color in an image.  The feature extraction process 

for this feature required the production of this transformation 

followed by the numerical summarization of the color content in 

the image.  For the SCH, the feature extraction process results in a 

feature vector of 76 fields recording the baricenter, variance, and 

count of each color bin represented in the image.  The full 

documentation of all features considered in this study is beyond 

the scope of this paper but can be reviewed in materials from the 

reference list[13]. 

 

Figure 1: The Spatial Chromatic Histogram 

 

3.3 Normalization 
     The raw numbers produced by the feature extraction process 

are more often than not scaled inconsistently.  Unless otherwise 

corrected, these inconsistencies result in variances that provide de 
facto feature weights increasing the importance of some features 

and decreasing that of others.  Moreover, many features require 

several levels of normalization.  For example, features recording 

spatially-dependent properties of an image such as line length or 

the number of colors must be normalized by the total number of 

pixels in an image before the values are normalized with respect 

to other features.  Normalization therefore ensures the internal 

consistency of features and prepares feature vectors for direct 

comparison.  The feature vectors were normalized to values 

between 0 and 1 using the following technique[4]: 
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where V(i) represents individual values in the feature vector, 

min(V) represents the minimum value in the feature vector, and 

max(V) represents the maximum value in the feature vector.  

3.4 Comparison 
     After the features were rescaled, the feature vectors were 

compared to identify the relative distance between two paintings.  

In most cases, the Euclidean distance metric serves as a decent 

approximation of the distance between two feature vectors.  In 

cases where features record ordinal or modulo measurements 

however, the Euclidean distance metric is often ineffective[2,19]. 

For example, hue histograms record the angular measurement of 



hue values and their differences are best represented by distance 

metrics that can account for this.  The palette description 

algorithm described below and its corresponding palette distance 

algorithm will serve as an example of a feature not well served by 

Euclidean distance metrics. 

3.5 Palette Description Algorithm 
     An image can be broken down into two main parts: an image 

map and an image index.  The image map records the set of colors 

required to display the image and the image index records the 

spatial arrangement of those colors in the image.  In terms of a 

painting, the image map corresponds to a painter’s palette while 

the image index corresponds to the canvas.  It is often desirable to 

compare the entire color palette of one painting to that of another.  

The palette description algorithm summarizes the color content of 

an image map for HSV colors by defining the central tendency of 

the colors in the image. 

 

Figure 2: HSV Decomposition into Value Slices 

     Figure 2 demonstrates the first step of the palette description 

algorithm.  The HSV cone is divided into equal value slices.  For 

each value slice, the mean hue, saturation, and value was 

calculated.  The distance between every color in the slice and the 

HS mean of that slice was calculated to determine the variance of 

the colors around the mean.  Finally, the total number of colors in 

the slice was also calculated.  Figure 3 displays the color 

distribution for a single slice from a palette description.  The 

mean value is displayed at the top of the figure.  The hue-

saturation mean is represented by the labeled red crosshair in the 

center of the distribution of colors.  The circle surrounding the 

hue-saturation mean represents the variance.  These palette 

description statistics provide a basis for comparing the color 

content of images. 

 

 

Figure 3: Value Slice 

 

3.6 Palette Comparison Algorithm 
     The distance between two palette descriptions is simply the 

slice by slice difference of the two palettes.  The palette 

comparison algorithm requires the following six steps to 

determine the difference between two palette descriptions.  First, 

the difference between HS pairs was calculated with the law of 

cosines: 

)cos(2 1221

2

2

2

1 huehuesatsatsatsathsdist −−+=

 

Second, the distance between values was calculated: 

|| 21 valvalvdist −= . 

Third, the distance between the variances was calculated: 

|| 21 vrvrvrdist −= . 

Fourth, the difference between the color counts was computed: 

.|| 21 countdistcountdistcountdist −=  

After finding the above differences for each slice, the fifth step 

computes the overall slice distance: 
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Finally, the total palette distance is the sum of the slice distances 

normalized by the number of slices: 
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Table 2 presents the classification accuracy of the palette 

algorithms as described above with those of comparable color 

HS Mean 



features.  When tested with the kNN classifier, the palette 

description algorithm classified images at a rate similar to 

comparable color features with less required storage (measured in 

doubles).  In fact, algorithms designed to preserve spatial and 

frequency information in the color channel were often less 

effective for classification than the palette description algorithm. 

Table 2: Classification Results of Color Features 

Feature Storage kNN1 kNN13 

Palette Description 10 50 36.7 30.0 

Autocorrelogram 16 64 10.0 20.0 

Hue Histogram 100 100 26.7 16.7 

Saturation Histogram 100 100 30.0 30.0 

DSCH 16 112 20.0 23.3 

RGB Histogram 768 33.3 23.3 

 

4. STYLE CLASSIFICATION 
     Two general types of classifiers were used in this study: 

supervised and unsupervised.  Supervised techniques require that 

data is divided into training and testing sets.  The goal of 

supervised classifiers is to “teach” the machine to recognize test 

paintings based on prior knowledge gleaned from the training set.  

Many of the studies in this domain rely on this technique to 

produce classification results gauged by overall accuracy[5,7,22].  

In this study, two types of supervised learning were used to 

evaluate features and groups of features: kNN and an Interactive 

approach. 

     While the supervised learning techniques are appropriate for 

many applications, they suffer from a few drawbacks.  First, as the 

number of classes increases, the classification accuracy degrades 

significantly.  Second, they are not particularly well-suited to 

analysis and visualization.  For applications requiring analysis and 

visualization capabilities, unsupervised learning techniques offer 

the following advantages.  First, these algorithms operate on an 

entire dataset eliminating the need to divide the data into training 

and testing sets.  Second, the algorithms are designed to show the 

relationships between the classes allowing for a detailed analysis 

of the relationships between styles in painting.  In this study, three 

unsupervised learning techniques were used: agglomerative 

hierarchical clustering, SOM, and MDS. 

4.1 Supervised Learning 

4.1.1 k-Nearest Neighbor 
     The kNN algorithm is a well-known supervised classification 

technique[3].  In this algorithm a test instance is classified by 

assuming the label of the most frequently occurring neighbor of k 

training samples.  The k closest training samples are examined 

and the label with the most votes is assigned to the test sample.  

The critical decision in the implementation of the kNN algorithm 

is choosing or finding the best window size or k.  The k values 

chosen for this study were 1 and 13.  The bulk of the feature 

testing relied on kNN classification. 

4.1.2 Interactive 
     The kNN testing described above was repeated using an 

application-oriented classification scheme.  The interactive 

technique is a modified version of kNN where the ten closest 

images are returned as one might expect an Image Retrieval 

system to behave.  Figure 4 displays a sample application 

designed to use the interactive classification technique.  The 

interactive technique was developed to gauge how various 

classifiers and features would perform in an application setting. 

 

Figure 4: Interactive Classification 

4.2 Unsupervised Learning 

4.2.1 Agglomerative Hierarchical Clustering 
     Hierarchical clustering provides information concerning 

clusters and subclusters found in data.  In contrast to flat 

descriptions of data where clusters are primarily disjoint, 

hierarchical clusters identify multiple levels of structure in data 

convenient for classification systems like those used in biological 

taxonomy[3,4].  The technique as applied to artistic style provides 

detailed information concerning the relative proximity of styles.  

As with many clustering techniques, hierarchical classification 

offers a natural visualization, the dendrogram.  Figure 5 depicts a 

style dendrogram of the Impressionist and Post-Impressionist 

painters in the test database.  The dendrogram shows three 

subclusters grouping Cezanne with Van Gogh, Monet with 

Pissarro, and Seurat with Sisley.   

     The algorithm that generated this dendrogram was the 

agglomerative or bottom up hierarchical clustering technique 

based on the complete-linkage algorithm[3,4].  The complete-

linkage algorithm determines cluster distance by measuring the 

most distant nodes in two clusters.  Formally, the complete-

linkage algorithm is defined as: 

||'||max),max( xxDDd ji −= , 

Where Di and Dj are clusters and x and x’ are nodes in clusters Di 

and Dj respectively.   



 

Figure 5: Style Dendrogram 

4.2.2 Self-Organizing Maps 
     While agglomerative clustering provides opportunities for 

organizing styles in a hierarchical way, other approaches offer a 

greater range of analytical capabilities.  Self-Organizing 

Maps[3,11] transform all points in the feature space to points in a 

target space that preserves the relative distances and proximities 

between instances as much as possible.  The appeal of SOM 

derives from its advanced visualization capabilities and analytical 

techniques.  Figure 6 displays a basic SOM for the Impressionist 

and Post-Impressionist database. 

 

Figure 6: Basic SOM 

     In addition to the basic SOM, advanced SOM techniques 

permit the identification of cluster boundaries, the analysis of 

individual features, and the evaluation of SOM quality with error 

measurements.  The SOM is a type of neural network that trains 

itself on an entire dataset to “learn” the structures inherent in the 

data.  The user specifies a topology, number of training epochs, 

neighborhood distances, and neighborhood weighting functions 

determining the specific techniques used for fitting the data to the 

SOM.  The training process involves mapping instances to the 

closest node in the map and identifying the best matching unit 

(BMU) for each instance.  After the SOM has been trained to 

these specifications, the user must decide how to label the map 

nodes.  Labels can represent instance names, class names or other 

designations that seem appropriate.  Finally, the trained SOM is 

represented with the U-matrix visualization which displays the 

average distance between map nodes (codebook vectors).  Figure 

7 shows a U-matrix for a SOM with hexagonal topology using the 

Gaussian weighting function and trained for 5000 epochs.  The 

labels on the U-matrix represent the most frequent class member 

assigned to that node.  The U-matrix represents the distances as 

calculated with all features.  It is possible to construct a U-matrix 

that considers only specific features as well.  The U-matrix 

denotes cluster boundaries with dark patches such as that in the 

upper left-hand corner of Figure 7. 

 

Figure 7: U-matrix Representation of SOM 

     In addition to the advanced visualization techniques, SOM 

provides a standard way to gauge the degree to which a map is 

actually organized.  The average unit of disorder (AUD) or 

quantization error measures the average distance between an 

instance in the dataset and its best matching unit: the higher the 

AUD the less organized the map.  The AUD can be plotted 

against the training epoch to estimate the quality of the SOM at 

various points of the training cycle.  Figure 8 displays two graphs 

measuring the SOM quality.  The top graph displays the AUD 

plotted against the training epoch.  The bottom graph displays the 

first and second principal components of the best matching units 

plotted against the feature vectors to present graphically the AUD. 

 

Figure 8: Graphs of the Average Unit of Disorder 



4.2.3 Multidimensional Scaling 
     While SOM provides broad analytical powers for analyzing 

features and clusters of paintings, it often obscures the 

arrangement of sample paintings within clusters.  There are often 

cases when the paintings themselves and their relationships to 

each other are the central focus of study.  In these cases, 

multidimensional scaling (MDS)[3,4] techniques serve rather 

well.  MDS is a data reduction technique that projects data with 

high dimensionality onto a Euclidean space preserving the 

original distances of the data points in a space that is easier to 

visualize.  Figure 9 shows an MDS analysis of ten paintings by 

Cezanne.  Each circle in the plot represents a painting.  By 

averaging the values of the samples it is possible to construct a 

theoretical style center that represents the central stylistic 

tendency of the paintings considered.  The average sum of the 

distances between each sample and the stylistic center provides 

and estimate of stylistic variance. 

 

Figure 9: MDS Analysis of Paintings by Cezanne 

 

 

Figure 10: Paintings Ordered By Distance to Stylistic Center 

     The style center and style variance can be used for additional 

analysis and visualization including providing lists of paintings 

ordered by proximity to the style center.  Figure 10 organizes 

images by proximity to the style center.  Just as MDS can spatially 

arrange and analyze data for a single artist, so can it arrange and 

analyze data for a group of artists.  Figure 11 displays the MDS 

analysis for the entire test database.  The MDS analysis in Figure 

11 displays both the global style center and the global style 

variance with a yellow cross and ellipse.  The distance between an 

artist’s style center and the global style center offers further 

analytical capability.  An identifiable cluster of Cezanne’s work is 

labeled and sits at a considerable distance from the global style 

center.  The theoretical style centers and variances are critical 

components to the evaluation of classification results. 

 

Figure 11:MDS Analysis of Style 

5. RESULTS AND EVALUATION 
     Classification results often vary to high degrees: the same set 

of features often classifies one artist particularly well and another 

rather poorly.  There are many possible explanations of this 

phenomena of which two are considered in this study: variance of 

data quality and variance of class quality.  Data quality regards the 

relative properties of the image file itself in particular its 

resolution.  Are paintings with higher resolution easier to classify?  

Class quality relates to the relative cohesion of a class.  For 

example, perhaps Cezanne is easier to classify because his style 

variance is relatively small compared to other artists.  Are classes 

with lower style variance easier to classify? 

5.1 Data Quality 
     The nature of the data is a likely factor in classification 

accuracy.  Several studies focus on a few high quality images to 

achieve high levels of accuracy in classification tasks.  It is 

intuitive to assume therefore that data quality has a proportional 

relationship to classification accuracy: as the data quality 

increases the classification accuracy increases as well.  The 

principal measurements of data quality in this context are average  

image resolution measured in pixels, average file size measured in 

bytes, and the ratio of bytes to pixels.  Table 3 shows the data 

quality measurements and the accuracy of results for the test 

database. 



Table 3: Data Quality Measurements 

Artist Pixels Bytes B/P kNN13 

Cezanne 916,559 156399 0.1706 100 

Monet 729,664 179350 0.2458 20 

Pissarro 590,655 157190 0.2661 0 

Seurat 766,260 241553 0.3152 60 

Sisley 849,990 199670 0.2349 20 

Van Gogh 775,980 201501 0.2623 0 

     The average number of pixels proved to be the best indicator 

of classification accuracy.  Figure 12 plots the relationship 

between the average number of pixels in an image class against 

the accuracy of classification for that class.  The graph shows a 

strong relationship between these two variables. 

 

Figure 12: Pixels vs. Classification Accuracy 

5.2 Class Quality 
     Another method of gauging classification accuracy involves 

measurements of class quality.  In previous sections, this study 

outlined a technique for describing useful properties of a class 

including style variance and the distance between a class style 

center and the global style center.  In this section, these metrics 

are employed as predictors of classification accuracy.  The style 

variance and the distance between the class centers and the global 

center provide a useful way to evaluate classification accuracy.  

The style description ratio is the ratio of the class center from the 

global style center divided by the class variance.  Formally, the 

style description ratio is: 
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gccc
S

2)( −

= , 

where S is the style description ratio, cc and gc are the class style 

center and global style center, and cv is the class variance.  As the 

style description ratio increases, theoretically, the accuracy of 

classification should increase as well. The rationale for this metric 

is based on two assumptions about class quality: classes whose 

central tendency is far from the global style center should be 

easier to classify than classes closer to the global center and 

classes whose variance is small should be easier to classify than 

classes with larger variances.  Table 4 shows the class quality 

measurements and the classification results for the test database. 

Table 4: Class Quality Measurements 

Artist CV CC-GC S kNN13 

Cezanne 2.1265 1.5351 0.7219 100 

Monet 3.5799 0.0712 0.0198 20 

Pissarro 3.1643 0.4832 0.1527 0 

Seurat 2.743 1.3812 0.5035 60 

Sisley 3.2783 0.6856 0.2091 20 

Van Gogh 3.9409 0.4548 0.1154 0 

     Figure 13 plots the style description ratio of the test data 

against the classification accuracy.  The style description ratio 

provides the best explanation of the classification accuracy thus 

far with only one serious outlier in the data (Monet).  Although 

not conclusive, the style description ratio is at least as effective as 

the pixel measurement in explaining the classification results 

presented. 

 

Figure 13: Style Description Ratio vs. Classification Accuracy 

     The evaluation technique discussed above has an important 

implication that deserves mention.  In the test case examined in 

this paper, the classes considered are fairly straight-forward and 

difficult to dispute: most people identify the artist of a work to be 

a relevant, useful, and reliable category for discussing artwork.  

There are other categories, however, that are more tenuous and 

contentious such as those based on movement, school, geography, 

or time period.  For example, it is common for early fourteenth-

century Tuscan paintings to be categorized as early Renaissance 

works by some historians and late Medieval works by others.  The 

evaluation technique outlined above provides a basis for gauging 

the quality of these classifications by defining a class variance and 

distance to the global style center.  It allows a researcher to 

identify the formal properties that delineate a particular class from 

other related classes if such properties exist and are measurable.  

In other words, the evaluation technique provides a method of 

testing the formal properties of art-historical categories and of 

comparing the formal properties of these categories.  The 

unsupervised classification techniques discussed can offer 



additional insight into class relationships by arranging the data in 

taxonomic formats.  Consider the dendrogram of the aggregate 

test data in Figure 14.  The graph bears out many of the same 

relationships found in the MDS analysis in Figure 11.  For 

example, in both Figures Monet’s style center is closest to the 

global style center and Cezanne and Seurat are a significant 

distance from it.  In short, it may be possible to build a taxonomic 

system for the formal aspects of artistic style. 

 

Figure 14:Style Dendrogram with Global Style Center 

6. CONCLUSION 
     Despite the current trend toward building style-specific models 

for painting classification, test results demonstrate that broader 

style-independent approaches to classification are possible.  It has 

been shown that preserving additional spatial and frequency color 

information does not necessarily improve classification accuracy.  

A palette description algorithm was proposed and demonstrated to 

perform as well as similar color description techniques with less 

storage overhead.  Several machine learning techniques were 

explored for their capacity to analyze, classify, and visualize style 

relationships including kNN, Hierarchical Clustering, SOM, and 

MDS.  Theoretical style centers and variances were proposed as 

descriptions of class style and global style characteristics.  These 

style descriptors were combined to construct a style description 

ratio that proved useful for evaluating classification results. 
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